
Hybrid Engine for
Polymorphic Shellcode

Detection
Udo Payer

udo.payer@iaik.at
Peter Teufl

peter.teufl@iaik.at
Mario Lamberger

Mario.lamberger@iaik.at
http://www.iaik.at

Overview
• POSITIF Project
• Shellcodes/Polymorphic shellcodes
• Proposed Detection Engine
• Results
• Conclusions/Outlook

POSITIF
• (Policy-based Security Tools and

Framework) is funded by the European
Commission

• main goal is to design automatic tools to
support security managers in protecting
networked infrastructures and applications

• ideas and solutions developed by
POSITIF will be available as open-source

http://www.positif.org/ipartners.html

Shellcodes
• Exploit buffer overflows to inject malicious code
• Typically consist of three zones: NOP zone, shellcode,

return address zone
• Can be detected by simple signatures
• Invention of polymorphism (also used for viruses)
• shellcodes without NOP zones

Shellcode Detection
• NOP zone: IDS search for repeating 0x90

patterns
• Shellcode: IDS search for shellcode

patterns (e.g. /bin/bash)
• Return address zone: IDS search for

return addresses of known buffer
overflows (e.g. Buttercup)

Polymorphic Shellcodes
• NOP zone:

– Detection of pure 0x90 NOP zones is simple
– Use other instructions than 0x90 (NOP)
– Not every instruction can be used
– All one byte instructions can be used safely
– n-byte (n>1) instructions decrease probability of

jumping into aligned code

Polymorphic Shellcodes
• Shellcode:

– Signatures can be derived: e.g. search for /bin/bash
– Encryption of shellcode (simple algorithms are

enough): e.g. xor encryption
– Mutation of encryption engine:

• insert junk instructions
• use other functions to achieve same result (e.g. push data,

pop reg instead of mov reg,data)

Polymorphic Shellcodes
• Return address zone:

– Cannot be encrypted
– Mutation of least significant byte
– Buttercup detection method

Polymorphic Shellcodes
NOP ZONE
2E inc edi
2F inc esp
30 inc ebp
31 push esi
DECRYPTION ENGINE
32 jmp short 0x67
34 pop eax
35 xor edx,edx
37 mov dl,0x20
39 mov ecx,[eax]
44 rol ecx,0xb
47 add ecx,0xc29e092f
4D xor ecx,0x5ffde9d7
58 sub eax,0xfffffffe
5D inc eax
5F sub dl,0x3
63 jz 0x6c
65 jmp short 0x39
67 call 0x34
ENCRYPTED SHELLCODE
6c xxxxxxx

Shellcode with
NOP zone
(JMP ESP)

Polymorphic Shellcodes
Shellcode without

NOP zone
(JMP ESP)

00002A76: 54 push esp
00002A77: 2404 and al,004
00002A79: 33C0 xor eax,eax
00002A7B: 8A0A mov cl,[edx]
00002A7D: 84C9 test cl,cl
00002A7F: 740F je .000002A90
00002A81: 80E930 sub cl,030 ;"0"
00002A84: 8D0480 lea eax,[eax][eax]*4
00002A87: 0FB6C9 movzx ecx,cl
00002A8A: 42 inc edx
00002A8B: 8D0441 lea eax,[ecx][eax]*2
00002A8E: EBEB jmps .000002A7B
00002A90: C20400 retn 00004

•instructions can be found in libraries
known to be always at the same memory
address
•database for such instructions
•Metasploit

Detection Engine
• Phase 1: NOP Zone detection

• Trigger for Phase 2
• Can be adapted to recognize JMP ESP techniques

• Phase 2: Execution chain evaluation
• Disassembling of byte stream after NOP zone
• Evaluation of control flow instructions

• Phase 3: Neural network classification
• Classification of disassembled instructions

• Implemented as SNORT Plugin

Detection Engine

Phase 1 Phase 2 Phase 3

Shellcode with
NOP zone

Shellcode without
NOP zone
(JMP ESP)

Phase 1: NOP Zone Detection
• Simple detection algorithm
• Searches for consecutive NOP bytes

(tests with 5 and 30 NOPS)
• NOP bytes taken from ADMmutate/CLET
• Serves as trigger for Phase 2

Phase 1: NOP Zone Detection
• Can be adapted to recognize shellcodes

without NOP zone
• Address database for „jmp esp“ like

instructions exist (e.g. Metasploit)
• Search for such addresses in network

traffic

Phase 2: Execution Chain
Evaluation

• Triggered by Phase 1
• Disassembling of bytestream after NOP

zone
• Control flow instructions are evaluated
• Spectrum of instructions for each

execution chain is created
• Whenever termination criterion is met NN

classifies spectrum (Phase 3)

Phase 2: Execution Chain
Evaluation

• Reasons:
– decrease noise
– parameters store encryption keys (random)
– get instructions used by decryption engines
– ignore junk bytes

Phase 2: Execution Chain
Evaluation

DECRYPTION ENGINE
32 jmp short 0x67
34 pop eax
35 xor edx,edx
37 mov dl,0x20
44 rol ecx,0xb
47 add ecx,0xc29e092f
58 sub eax,0xfffffffe
5D inc eax
63 jz 0x6c
65 jmp short 0x37
67 call 0x34
ENCRYPTED SHELLCODE
6c xxxxxxx

EC1
32 jmp short 0x67
67 call 0x34
34 pop eax
35 xor edx,edx
37 mov dl,0x20
44 rol ecx,0xb
47 add ecx,0xc29e092f
58 sub eax,0xfffffffe
5D inc eax
63 jz 0x6c

EC1B
65 jmp short 0x37
67 mov dl,0x20
44 rol ecx,0xb
35 xor edx,edx

EC1A
6c xxxxxxx

For each execution
chain:
jmp: 3
xor: 2
call: 1
…

Phase 3

Phase 3: NN Classification
• Neural network structure:

– 29 input neurons (29 features)
– 12 hidden layer neurons
– 1 output neuron

• Training algorithm: Levenberg-Marquardt
• Activation function: tansig
• Structure was chosen intuitively (further

optimization was not necessary)

Phase 3: NN Classification
• Features are based on decryption

engines of ADMmutate and CLET
• Instructions were grouped and additional

instructions were added
• The last feature covers all instructions not

included in the groups

Phase 3: NN classification

all other instructions29loop, loope, loopne14
mov15

cbw, cwd, cdq, cdwe28inc, dec13
clc, cld, cli…27jmp12
aaa, aad, aam, aas…26jcc11
sahf25rol, ror10
lahf24pushf9
neg23pusha8
sti, stc, std22push7
cmp, cmpsb, cmpsw…21popf6
div, idiv, fdiv20popa5
mul, imul, fmul19pop4
xor18and, or, not3
shl, shr17call2
test16add, sub1

InstructionsFeatureInstructionsFeature

Shellcode engines
• ADMmutate: XOR encryption, JUNK

instructions between real decryption loop
instructions

• CLET: XOR encryption, JUNK bytes to defeat
spectrum analysis

• JempiScodes: XOR encryption, easy to detect
• EE1: XOR encryption, JUNK instructions
• EE2: TEA encryption, JUNK instructions
• EE3: Usage of different instruction for

„encryption“, JUNK instructions

Results
• Positive training data (shellcodes):

– About 2000 examples generated with each
engine (seperated into test/train sets)

• Negative training data:
– About 9 Gb of data taken from

Linux/Windows installations
– Covers executables, multimedia files,

documents…

Results
• Collection of negative data:

– Phase 1 is applied to negative test sets
– Several million collected negative examples
– 8000 negative examples are taken randomly
– Initial NN is trained with those examples
– All phases are applied to the train sets
– Remaining examples are added to the

negative training set…

100%97%100%0,8%98,9%20%EE3

1,5%100%4,7%0%33%2,3%EE2

100%100%100%0,8%91,2%17,4%EE1

17,7%0,1%13%100%0%26,6%JEMPI

3,5%0%1,7%0%100%3,2%CLET

75,9%93%79,2%100%38,8%100%ADM

EE3EE2EE1JEMPICLETADM

Phase 3: NN Classification

100%49,3%99,8%0%100%100%5

100%98,3%100%71,4%100%100%30

EE3EE2EE1JempiCLETADMmutateThreshold

• Best results were taken (ADMmutate and
EE3)

• New NN was trained with examples from
both engines

Analysis
• Engine can be retrained on new

polymorphic shellcode engines without in
depth knowledge

• Results indicate that the detection engine
is capable of detecting engines not used
during the training process

Outlook
• Unsupervised learning
• Use other methods to trigger Phase 2
• Automatic feature selection
• Use gained experience to implement

anomaly detection system
• Intrusion detection framework: input

plugins, training plugins, detection plugins
based on machine learning

Thank you for your
attention!

