
A Learning-based Approach
to the Detection of

SQL Attacks

Fredrik Valeur, Darren Mutz, Giovanni Vigna
Reliable Software Group

Department of Computer Science
University of California, Santa Barbara

http://www.cs.ucsb.edu/~rsg

2

Web-based Applications

• Web applications have become pervasive
– Use server-side execution mechanisms to access application-specific data

– Use client-side execution mechanisms to manage user interaction

• Web applications are highly available
– Deployed by the vast majority of companies, organizations, institutions

– Can be reached through firewalls

• Infrastructure (Web servers, DB engines) developed by security-aware developers

• Application-specific code often vulnerable
– Developed in-house to provide custom functionality by programmers with limited

security skills

– Developed under time-to-market pressure (“get the job done” syndrome)

• Result: Web applications are popular attack targets

3

SQL-based Attacks

• SQL injection attacks
– Unsanitized user input is used to compose an SQL query (e.g., string concatenation of

user-provided parameters)
– Attackers can provide input that contains SQL code and modifies the application

behavior
– These attacks can also be performed in two steps when DB content is used to

compose SQL queries

• XSS scripting attack
– Unsanitized data is stored in the back-end database of a web application
– Attackers can store scripting code that will be executed in the browser of an

unsuspecting user

• Data-centric attacks
– Unchecked user input values can cause unexpected application behavior
– Attackers provide unexpected values to trigger anomalous behavior

4

Does It Matter?

26.0 %20457861Total

22.2 %31812082004

24.6 %2359562003

35.7 %53815072002

28.0 %38113632001

24.9 %30012032000

16.6 %25715521999

PercentageWeb-RelatedTotal
CVE/CAN

Year

5

Foiling SQL-based Attacks

• Prevention
– Access control mechanisms (difficult to “get it right”)
– Code audits (expensive and effort/expertise-intensive)
– Pen testing (expensive and cannot keep track of fast-changing applications)

• Misuse detection (and response)
– Snort (network traffic)
– WebWatcher (web log entries)
– WebSTAT (network traffic, web log entries, system calls)

• Misuse detection systems are precise and effective but...
– These system do not analyze the actual SQL query
– Unforeseen vulnerabilities are introduced by web-based custom applications
– Developing signatures is time-consuming and requires security expertise

6

Anomaly-based Detection of
SQL Attacks

• Anomaly detection relies on models of expected behavior and
detects deviations from the models

• Assumption: Malicious activity generates anomalies

• Assumption: Anomalous behaviour is to be considered malicious

• Advantage: Can detect previously unknown attacks

• Approach: A multi-model, learning-based anomaly detection system
to detect SQL-based attacks
– Developed leveraging the libAnomaly framework developed at UCSB

• http://www.cs.ucsb.edu/~rsg/libAnomaly

7

Related Work

• Specification-based anomaly detection
– The characteristics of “normal behavior” are specified by a human expert
– Advantage: Reliable models and few false positives
– Disadvantage: Models can be difficult to write/derive

• Learning-based anomaly detection
– The characteristics of “normal behavior” are automatically derived from training data
– Advantage: Reduced expertise-intensive setup
– Disadvantage: Incomplete, may generate false positives, may be vulnerable to mimicry

attacks (e.g., Wagner’s and Maxion’s works)

• Data mining techniques for network traffic (e.g., S. Stolfo and W. Lee’s work)

• Statistical analysis of OS audit records (e.g., D. Denning and A. Valdes)

• Sequence analysis of operating system calls (e.g., S. Forrest’s approach)

8

Closely Related Work

• S. Lee et al., “Learning Fingerprints for a Database Intrusion Detection System,”
ESORICS 2002
– Learns structural models of acceptable SQL queries

– Vulnerable to mimicry attacks

• Halfond et al., “Combining Static Analysis and Runtime Monitoring to Counter
SQL-Injection Attacks,” ICSE Workshop on Dynamic Analysis, 2005
– Uses static analysis to generate models of acceptable SQL queries

– Cannot address complex code structure

• Some commercial tools provide learning-based mechanisms against SQL-based
attacks (difficult to compare because details are not provided)
– Imperva’s SecureSphere

9

Architecture

10

Models and Profiles

• Model: set of procedures used to evaluate a certain feature
of an SQL query
– Single feature: string length

– Multiple features: relationship between field values

– Series of queries: time delay between queries

• Profile: association of a model with one or more attributes
of a specific query
– Example: string length model for the user attribute of the query

used during login

11

Training

• Models can operate in one of two modes
– Training
– Detection

• During training, profiles are established during a two-step
training phase

• First phase: captures profiles
• Second phase: determines anomaly thresholds
– Highest anomaly score is recorded
– Thresholds set to a value x% higher than the highest anomaly

score

12

Detection

• A model assigns a probability value p to a query or an
attribute of a query, given an established profile
– p = 0 means anomalous

• The anomaly score of a query is determined by
composing the results of the applicable models

• High anomaly score values indicate anomalous queries

!

" log (1" pm)
m#Models

$

13

Architecture

14

Event Provider

• Responsible for supplying the IDS with a stream of SQL queries

• Does not rely on application-level mechanisms to collect the query
data

• Collects the name of the script executing the query
– Future extensions are planned to include line number

• Implemented by modifying the system libraries that support DB
connectivity

15

Parser

• Generates a higher-level representation of the query

• Queries are tokenized into keywords and literals
– Literals are the only fields that should contain user input

• Tokens representing table fields are augmented with a type

• A type table is automatically generated by parsing the database schema

• Each literal’s type is used to determine which models can be applied
• New, custom data types can be specified by the user to allow for better

characterization (e.g., varchar can be refined to contain XML data)

• Literals’ types are inferred by using simple rules
– Comparison to a typed field

– Insertion in a typed field of a table

16

Feature Selector

• The feature selector prepares a query to be evaluated by models

• It generates a skeleton query that represents the structure of the query (i.e., all constants
are replaced by place-holders)

• If models are being trained
– The invoking script and the skeleton are used as a key to lookup the corresponding profile

– The relevant profile is updated

• If thresholds are being determined
– The relevant profile is recovered

– The corresponding models are used to determine an anomaly score

– The thresholds are updated to allow the event to fit as normal

• If detection is being performed
– Anomaly score determined as in the threshold-learning phase

– Queries whose anomaly scores overcome the established threshold are marked as malicious

17

Detection Models

• String length
– Statistically models the “normal” length for a certain parameter of a specific query

(based on Chebyshev inequality)

• String character distribution
– Statistically models the relative frequencies of characters (based on Pearson’s χ2-test)

• String prefix and suffix matcher
– Models shared substring values at the beginning and end of strings (e.g., pathnames

and extensions)

• String structural inference
– Generates a probabilistic grammar of the parameter value (based on Stolcke and

Omohundro’s state-merging technique)

• Token finder
– Models parameters that assume a finite set of values (based on Kolmogorov-Smirnov

non-parametric variant)

18

Evaluation

• We evaluated our system using an installation of the PHP-Nuke web portal system
– Standard LAMP configuration

• Attack-free audit data was generated by
– Manually operating the web site

– Using custom bots that simulate user activity

• Data sets
– Training (44035 queries)

– Threshold learning (13831 queries)

– False positive rate estimation (15704 queries)

• Attacks
– Developed four different SQL-based attacks (0-day) against PHP-Nuke

– Collected corresponding traces

19

Attacks

• Resetting users’ passwords
– Post data: name='; UPDATE nuke_users SET

user_password='<new_md5_pass>' WHERE username='<user>'; --

– Result: SELECT active, view FROM nuke_modules WHERE
title='Statistics'; UPDATE nuke_users SET
user_password='<new_md5_pass>' WHERE username='<user>'; −−'

• Enumerating all users
– Post data 1: name=Your_Account
– Post data 2: op=userinfo
– Post data 3: username=' OR username LIKE 'A%'; −−
– Result: SELECT uname FROM nuke_session WHERE uname='' OR

username LIKE 'A%'; −− '

20

Attacks

• Parallel password guessing
– Post data 1: name=Your_Account
– Post data 2: username=' OR user_password = '<md5_pass>';
– Post data 3: user_password=<password>
– Result: SELECT user_password, user id, FROM nuke_users WHERE

username='' OR user_password = '<md5 password>' ;'

• Cross-site scripting
– Referer HTTP header field set to "onclick="alert(document.domain);"
– Result: INSERT INTO nuke_referer VALUES (NULL, '"

onclick="alert(document.domain);"')

• Notes:
– Magic quotes were disabled
– Used bleeding-edge version of MySQL supporting multiple queries separated by

semicolon

21

Results

• All attacks were detected with no false positives

• Running the false positive test (15704 attack-free queries)
caused 58 false positives (0.37%)
– Problem with changing month

• Adding new custom data types (“month” and “year”)
reduced false positive to just 2 (0.013%)
– Queries that were not observed in training

22

Conclusions

• Web applications are vulnerable to attacks against back-end databases
• We developed an anomaly detection system that performs learning-

based, multi-model characterization of SQL queries performed by
web applications

• Evaluated our tool against a real-world application and real “novel”
attacks

• Both detection rate and false positive rate are satisfactory
• Future work

– More models
– More testing
– Integration with webAnomaly and sysAnomaly

23

Questions?
My Office Here

