
Combining IDS and Honeynet Methods for

Improved Detection and Automatic Isolation of
Compromised Systems

Stephan Riebach, Birger Toedtmann, Erwin Rathgeb

Computer Networking Technology Group
Institute for Experimental Mathematics
University Duisburg-Essen, Germany

{riebach|btoedtmann|erwin.rathgeb}@iem.uni-due.de

Abstract. The growing penetration of mobile terminals increasingly
limits the usefulness and efficiency of classical firewall architectures and,
therefore, increases the need for the deployment of Intrusion Detection
Systems (IDS). In this contribution a concept is proposed that combines
an anomaly-based IDS with mechanisms typically applied in honeynets
as well as with additional functions. A first prototype implementation of
this concept indicates that it allows to combine the advantages of both
approaches in order to improve the accuracy of anomaly detection while
at the same time avoiding unnecessary restrictions for the users of suspi-
cious systems as well as minimising the risk for the rest of the production
network.

1 Introduction

Despite intensive efforts to achieve security objectives and to actively detect
successful attacks in IT infrastructures, a vast number of undetected intrusions
with severe impact on system security can be observed. One of the reasons is
the drastic reduction in product life cycles of hardware and software due to a
highly competitive market. This results in rapid changes of IT infrastructures
and, as a consequence, in a continuous introduction of new and previously un-
known vulnerabilities. In addition, attackers continuously refine and adapt their
methods to new vulnerabilities as well as to the countermeasures developed in
response. While significant progress has been made in the area of intrusion de-
tection (see e.g. [1], [2], [3]), the inherent problem of all pattern recognition
approaches remains unsolved: there is always a – small but finite -– probabil-
ity for non-existing, falsely detected and existing, but not detected incidents.
Both, the so-called ”misuse” detection applying static filters to decide on the
existence of security violations as well as the “anomaly” detection trying to
identify deviations from “normal” system or network behaviour are subject to
those false positives and false negatives to a certain degree [3]. Unfortunately,
it is exactly this property of IDSs that leads to a negative feedback process
in real life application: overwhelmed and annoyed by too many false alarms,

2

network administrators tend to underestimate or overlook serious alarms, and
sometimes they even reduce the sensitivity of the IDS. On the other hand, one
single undetected intrusion can seriously undermine the confidence in the IDS.

In order to allow fast and reliable identification and analysis of new attack
patterns and signatures, the application of so-called honeynets [6] has been pro-
posed. Honeynets are artificial networks (i.e. networks with no real users or
traffic) exposing computer systems (honeypots) openly (i.e. without full firewall
protection) to attacks in a tightly controlled and monitored environment. Due
to their comprehensive traffic and activity logging capabilities, honeynets can be
used to gather statistical data on the number and type of attack attempts [7]. In
addition they allow in-depth forensic analysis (online and offline) of successful
attacks to gain insight into the methods, strategies and motivations of attack-
ers [6], [8]. However, our own experience has shown that operating a honeynet
requires a significant effort. Furthermore, the results obtained from a honeynet
are not directly usable for intrusion detection purposes. Therefore, the benefits
of using honeypots and honeynets to support IDSs in production networks are
disputed in the IDS community.

The concept presented in this paper combines mechanisms from the areas of
intrusion detection and intrusion response with honeynet mechanisms. The basic
idea is to isolate systems generating suspicious (but not yet positively identified
as malicious) traffic automatically in a tightly controlled honeynet environment
for further observation before making a final decision. During this “quarantine”,
harmless traffic from these systems is still forwarded to the production network to
allow users to continue working while all potentially harmful traffic is contained
within the honeynet. Thus, it is possible to reduce the number of false alarms
without generating an unacceptable risk for the production network.

In section 2, the relevant characteristics of IDSs and honeynets will be dis-
cussed before presenting the proposed concept and its components in some detail
in section 3. Section 4 presents a first prototype implementation which demon-
strates the feasibility of the concept. Section 5 provides a summary and an
outlook on further work.

2 Features and limitations of IDSs and honeynets

Mobile terminals used both within private (enterprise) networks and outside
while at home or travelling can only be partially controlled by the network ad-
ministration. Therefore, they provide multiple entry points for malware and limit
the efficiency of classical firewall concepts. To the same degree, the need to de-
tect the violation of security objectives and to contain their impact increases.
Intrusion detection and intrusion response systems are deployed to provide a
way for dealing with these conditions by reporting observed incidents. The (ad-
ditional) use of honeynets and honeypots has also been proposed to investigate
new attack types.

3

These concepts originally developed for completely different purposes have
to some extent complementary strengths which can be combined to improve the
overall security achieved by these techniques.

2.1 Intrusion detection und intrusion response

Intrusion Detection Systems (IDS) are used to detect malicious attack activi-
ties in computer systems or within a computer network. A classification is made
distinguishing rule based detection approaches, also called “misuse detection”,
and approaches trying to detect deviations from normal operation, also known
as ”anomaly detection” [4]. Furthermore, a distinction is made between IDSs
monitoring all data traffic in a local network (Network Intrusion Detection Sys-
tem, NIDS) and those checking for manipulations in the software of computer
systems (Host Intrusion Detection System, HIDS). A rule based NIDS will thus
search for known patterns (signatures), e.g. typical keywords or bit combina-
tions, in data packets sent over the network. Inside a computer system, a HIDS
will check for modified, deleted or newly added (system) files and unusual ac-
tivities – in particular accesses to program libraries -– which could indicate a
violation of security objectives [4].

IDSs are per definition passive systems. Their task is alarm generation rather
than system protection by data filtering or by repairing the file system. Com-
bining an IDS with such mechanisms yields a so-called “Intrusion Prevention
System” (IPS). A problem when applying an IPS is the (unjustified) isolation of
computer systems in case of false alarms, which typically leads to long periods of
severe usage restrictions due to the human intervention required for correction.

Attack detection by using IDSs is subject to some significant limitations re-
ducing their effectiveness in many real world scenarios. Typically IDSs are not
designed to cope with realtime requirements. HIDSs are mostly offline systems
performing periodic checks of the file system rather than continuously monitoring
system activity. The latter would require severe modifications in the operating
system, e.g. replacement of internal system calls like open(). In an offline sys-
tem, the duration of the check interval obviously limits the realtime capabilities.
Although NIDSs continuously monitor network traffic, alarms are typically gath-
ered in log files which have to be evaluated manually by the administrator, thus
limiting the capabilities for realtime response. Our measurements have shown
that the commonly used NIDS Snort [10] needs up to 40 seconds to report an
attack signature under heavy network load conditions. In addition, many IDSs
such as e.g. the popular Snort or the HIDS Aide [11] do not correlate isolated
incidents they have detected. As a consequence, every single signature or modifi-
cation is logged separately resulting in huge log files. It is up to the administrator
to evaluate this huge amount of data and to identify and correctly interpret inci-
dents as port scans, execution of shell code or a replaced system file. Detection of
multi-phase attacks is not supported by these tools. Furthermore, they provide
no means to isolate suspicious systems even if they can be identified. Hence,
again human intervention is required to reinstate network integrity.

4

IDSs applying misuse detection are only able to detect known attacks de-
scribed by predefined detection rules (signatures) — new and unknown attacks
remain undiscovered. As these signatures are the result of intensive offline anal-
ysis of attack activities, such a system always lags behind the current threat
situation. An alternative are anomaly-based detection systems scanning for un-
usual network or system activities. Such systems, however, require a significantly
higher effort for administration. Especially during the deployment phase when
“normal” system and network behaviour is learned by the IDS, a lot of false
alarms are typically generated. Subsequent changes in the network, e.g. recon-
figurations or the deployment of new applications and users can also cause an
increase of false alarms. Furthermore, anomaly detection requires significantly
more computing power than rule-based detection and performance is also a con-
cern in heavily loaded networks or systems. The main advantage of anomaly-
based systems is their ability to also cope with previously unknown attacks and,
therefore, a significant research effort is spent in this area.

2.2 Honeypots und Honeynets

Honeypots are computer systems explicitly deployed to be found, probed and
compromised by attackers [6]. This however does not mean that a honeypot is
per definition a system which is reachable from the internet and is completely
unprotected. In fact a honeypot is generically a security resource used to detect
and analyse attack attempts from arbitrary sources. Honeypots are equipped
with comprehensive HIDS sensors and logging facilities, e.g. recording keystrokes
and registry modifications.

A honeynet is an artificial network including honeypots but typically no
production systems. Data traffic in the honeynet is tightly monitored by NIDS
sensors. In addition, all network traffic is logged on packet level. Since no pro-
duction systems have to be protected and no (disturbing) production traffic is
present in a honeynet, successful attacks can be allowed in a controlled fashion
and a medium to long term observation of attacker activities is possible. Even de-
tailed offline forensic analysis is possible due to the comprehensive traffic logging.
Thus, a honeynet allows far more detailed and flexible attack observations than
IDSs in production networks, where immediate countermeasures are required.

Honeynets can be operated in parallel with production networks. However,
they require a significant amount of resources, not only in terms of hardware
but also in terms of administration effort [8]. As a general rule, it makes sense
to separate the honeynet completely from the production network to make the
forensic analysis of successful attacks more efficient. As a consequence, honeynets
usually give no direct indication about intrusions in the production network even
if they are co-located.

5

3 Improved anomaly detection by using automatically
configured quarantine networks with honeypots

The proposed scheme attempts to combine the advantages of host and network
based IDSs with those of honeynets in order to reduce the probability of false
alarms which would cause severe usage restrictions for suspected users and sys-
tems. We assume that the majority of computer systems in a typical production
network is not protected by a sophisticated HIDS – due to the effort that has to
be spent and the expertise that is required -– and, therefore, intrusions on these
systems will remain undetected.

The basic idea of our scheme now is to isolate the corresponding computer
system fast and automatically if the NIDS reports a suspected intrusion there.
However, the system is not fully detached from the production network until
a successful attack has been confirmed. Instead, limited usage of production
network resources is still allowed as long as there is no severe risk for the other
systems. Since the restrictions for the user of the potentially compromised system
may be tolerable, the network administration can afford the time for an in depth
evaluation of the incident.

The second part of the proposed scheme is to expose (one or more) honey-
pots that have been configured like a typical production system – and are thus
vulnerable to the same exploits – directly to the suspected machine. If one of
the honeypots is being compromised successfully, its HIDS will report this, re-
sulting in a positive proof that the suspicion was correct. If, on the other hand,
no further attack attempts are being reported, a false alarm can be assumed
with sufficient probability and the isolated system can be released back into the
production network.

In this way, the main features of honeynets, namely isolation of suspicious
activities and exposure to artificial vulnerabilities, are used to allow for a more
comprehensive evaluation of suspicious activities, enhancing intrusion detection
accuracy. At the same time, massive disruption of normal operation is avoided.1

3.1 Concept overview

Starting from a traditional anomaly-based NIDS, additional functions have to be
provided to automatically initiate an in-depth inspection if a suspicious but not
clearly malicious activity is detected. The suspicious system has to be partially
confined to a quarantine network. There it can interact with the preconfigured
honeynets representing the vulnerabilities of the typical production systems in
order validate the suspicion. Figure 1 shows the main components of the proposed
system, their interaction and basic functionality. A detailed description of the
various functions is given in the following subsections.

1 The principle of isolation and verification of an initial suspicion is also well known
from controlling epidemics and identifying criminals, where it is quite successfully
applied.

6

The proposed scheme is incident driven. The triggering incident is an alarm
from the NIDS monitoring traffic in the production network which cannot be
positively identified as malicious. To minimise reaction time, a “topology mon-
itoring” function proactively collects information on the physical attachment
points (switch ports) of all computer systems in the networks. When the mecha-
nism is triggered for a specific computer system, the IP address of the suspicious
machine is being identified, the physical port where it is attached to the net-
work is retrieved and the system is moved to the quarantine network by an
“isolation/rehabilitation” mechanism located at OSI layer 2 (see section 3.4 for
details) – which is transparent to the application. A corresponding packet filter
function provides limited access from the quarantine network to the production
network such that some preconfigured basic services (e.g. WWW) will remain
available in order to limit the impact for the user during the subsequent investi-
gation phase. All other activities which could be related to a successful intrusion
are contained within the quarantine network (as in a classical honeynet) such
that only the honeypots are exposed to them. If the NIDS in the quarantine
network or the HIDSs within the honeypots detect signs of an attack, e.g. illegal
file accesses, it is proven that the suspicious system has been compromised. A
corresponding feedback to the isolation/rehabilitation function will result in a
complete and permanent detachment of the compromised system from the pro-
duction network. Of course, this action is documented and signalled both to the
user of the compromised system and the network administrator. If -– in case of
a false alarm -– no attacks on the honeypots can be observed for a preconfigured
time period a “quarantine timer” function will initiate the release of the falsely
suspected system.

3.2 Anomaly detection with two thresholds

The approach chosen for our scheme is based on the anomaly-based search for
intrusions and exploitation of vulnerabilities. Therefore, a NIDS sensor is as-
sumed to monitor unusual activities in the production network and to document
them in a log file.

A commonly used scheme for anomaly detection is to perform a training
phase to gather information about “normal” system operation. The relative fre-
quency with which a specific activity x occurs is measured and used as an esti-
mate for the probability P (x) of its occurrence. A specific inverse function such
as

A(x) = −log2(P (x))

yields the anomaly indicators – which are obviously high for unexpected
events and low for expected ones. As an example, anomaly indicators can be
calculated for combinations of IP addresses and TCP destination ports in data
packets. The training phase for an email server with IP address 10.0.0.1 might
result in the probabilities P (10.0.0.1; 25) = 0.9 and P (10.0.0.1; 80) = 0.1 (a mail
server is usually not a WWW server). Therefore, the anomaly indicator A(x) of

7

an email packet (using destination port 25) to this server would be roughly 0.15,
whereas the anomaly indicator for a http packet (port 80) to the same server
would be 3.32 [13].

packet
observed

A(x) < S ?
yes

A(x) > S ?
yes

no

no

alarm
send

packet
observed

new MAC

no

yes

switch port
find

database
write into

attachment point discovery anomaly detection with two thresholds

read from
database

port
timer

timer
stop

no

configure
switch port

start
rehabilitat.

start
isolation

timer
start

all−clear timer

isolation/rehabilitation

state
change

quarantine network

HIDS reports

yes

no

activity?

deactivate

u

o

expired?

address?

reset
honeypot

S : upper threshold

S : lower threshold
o

u

A(x): anomaly score

yes

+

+

+

+

Fig. 1. Main functional blocks, sequence of operation diagram

To be able to identify and report a significant deviation from normal oper-
ation, the definition of a threshold by the network administrator is necessary.
This threshold value is consequently also responsible for the rate of false posi-
tives and false negatives: if it is set too low, a massive number of false alarms is
generated. If it is set too high, the system becomes insensitive and real attack
signatures will remain undetected.

To adapt this mechanism to our scheme, the anomaly assessment of the
detectors is modified to take into account two thresholds that distinguish three
areas:

8

– Normal: Anomaly indicator below lower threshold, event is definitely rated
as normal activity

– Suspicious: Anomaly indicator between lower and upper threshold, further
observation in the quarantine network is initiated.

– Alarm: Anomaly indicator above upper threshold, event is definitely rated
as dangerous, countermeasures (e.g. shutdown of the switch port) are imme-
diately initiated

This function is permanently active and performs a continuous monitoring
of the network traffic. Of course, more sophisticated algorithms for anomaly
detection can be used as well. Since the definition of a second threshold only
changes the interpretation of the computational result, the algorithm as such
does not need to be modified.

3.3 Topology monitoring

Most applications in today’s networks are IP based, i.e. they expect stable IP
parameters like source and destination IP addresses, transport protocol type and
source and destination port number. The protocol parameters of the underlying
(OSI layer 2) protocols, however, are normally not visible for the application.
This means that, e.g. MAC addresses can be modified without major impact on
active applications.2

This property is used in our approach to perform the isolation of a sucpicious
system in realtime and (as far as possible) transparent for running applications.
For this VLANs (Virtual LANs) are used which can also be maintained in com-
plex, hierarchical switched-LAN topologies if IEEE standard 802.1q is applied.
As a prerequisite for rapid isolation, the correct physical attachment port of
the suspicious system has to be identified. Although the IP addresses related to
suspicious traffic are in principle known to the IDS, two problems remain:

– The MAC addresses are not necessarily known, because the suspicious sys-
tem might be located in a different broadcast domain.

– The reported IP address is not necessarily the correct one because it might
be manipulated (spoofed) by the compromised system.

Another problem is that a reactive scheme starting to locate the port only
after suspicious traffic has been detected doesn’t react fast enough. By using
the Simple Network Management protocol (SNMP [15]), the information for
reliably locating the physical access port can be collected automatically from all
network nodes. As the query and response process as well as the correlation of
the resulting data takes time, we propose to apply a proactive approach where all
systems have been already tracked down when they generated traffic for the first
time after being attached to the network. The initial packets are traced back to
their origin by first establishing the IP-to-MAC address mapping (by monitoring

2 If ARP caching is used, some temporary performance degradation may occur.

9

the Address Resolution Protocol, ARP) and subsequently polling the Bridge-
MIBs [18] of all switches via SNMP to derive the MAC-to-port mapping. Thus
a complete map identifying the physical attachment port of all active systems
in the network can be generated and stored. The topology monitoring function
is continuously active and updates the system location map dynamically.

In case several systems are connected to the same port via a hub, the whole
segment attached to the port is isolated if necessary. If authentication mech-
anisms on OSI Layer 2, e.g. IEEE 802.1x [20] and EAP [19], are used in the
network, locating the systems is even simpler because the relevant information
is explicitly exchanged in these protocols.

3.4 Isolation and Rehabilitation

The purpose of this functional block is to isolate suspicious systems from the
production network (triggered by the request from the IDS) by moving them to
the quarantine network by means of a preconfigured VLAN. A prerequisite is
that all switches are IEEE 802.1q enabled, i.e. all switches are able to recognise
the VLAN tags and will process them accordingly. A special quarantine VLAN
configuration exists that ensures that all data packets from an isolated system
are tagged accordingly forwarded based on these VLAN tags to the central mon-
itoring system. From there they are relayed either to the quarantine network or
the production network, depending on preconfigured forwarding and filtering
rules.

Once the isolation process is triggered, the switch where the suspicious system
is attached to and its physical port number within the switch are retrieved from
the system location map. In the next step, the switch is instructed via SNMP
to move the suspicious system from the default VLAN — where the production
network is located — to the quarantine VLAN.

Depending on the result of the investigations carried out during the confine-
ment, the isolation/rehabilitation function is instructed to either disconnect the
suspicious system completely from the production network by shutting down the
physical switch port, or to reconnect it to the production network by moving it
to back the default VLAN.

As a result, we establish three distinct network partitions which are connected
to the central monitoring system:

1. the production network,
2. the suspicious system separated from the production network by the VLAN

and
3. the quarantine network.

A filter logic there defines how the packets are forwarded:

– All three network partitions are members of a common bridge such that the
partitioning is transparent for the applications.

– Traffic originating from the suspicious system that has been classified as
harmless based on predefined rules -– e.g. access to web pages —is passed
to the production network.

10

– All other (potentially dangerous) traffic generated by the suspicious system
is diverted to the quarantine network where it can reach only the honeypots.

– Traffic from both the production and the quarantine network destined to the
suspicious system is delivered there.

– All traffic between the production and the quarantine network is blocked.

In such a scenario, a basic service can be provided to the isolated system
during the quarantine period. The potential risk for the production network
emanating from the applications classified as harmless can be further minimised
by using a local Intrusion Prevention System, e.g. Snort inline [12]. With this
extension, Snort can modify the monitored traffic in such a way that specific
attack patterns are normalized.3

This function block is being triggered by the various sensor blocks if systems
have to be isolated, blocked or reconnected.

3.5 Quarantine network

In the quarantine network -– which is essentially a honeynet -– there are only
honeypots which are fully exposed to the suspicious systems under observation.
The honeypots represent typical systems similar to those found in the production
network rather than arbitrarily weak systems. This reflects the actual threat level
for the production network.

Due to their sophisticated HIDS sensors, the honeypots are able to detect
intrusions quickly and reliably and will report them to the central monitoring
system. It is crucial for the effectiveness of the overall system that the HIDS
should operate with a low latency, i.e. rather than only performing periodic
checks of MD5 checksums, tighter monitoring of local process activity, disk and
(system) file access is necessary. However, since there are no real users on the
honeypots, this is not really problematic as any activity going beyond the usual
internal system maintenance should be flagged as intentional malicious. These
techniques provide the quarantine network and its honeypots with examination
and observation capabilities way beyond those feasible in the production net-
work.

The quarantine network is preconfigured and continuously active. However,
it has to be made sure that compromised honeypots are restarted with a clean
configuration once the isolated system has been removed.

3.6 Quarantine timer

The partial isolation of suspicious systems is controlled by a timer which is pre-
configured by the network administrator to balance out the detection accuracy
and the restrictions imposed on the isolated systems. If no attack activities are
detected during this time period, it is assumed that the suspicion was unsub-
stantiated. The system is moved back to the production network in this case
and, thus, fully rehabilitated.
3 This makes sense especially if email is still allowed, to avoid spreading of viruses.

11

4 Prototype implementation

We decided to set up a first prototype for the concept described above with
a Linux system that serves as the IDS as well as the host for the quarantine
network. The production network was built from two Cisco switches and several
WindowsXP systems. The switches were configured to support 802.1q VLAN
tagging on their uplinks, which are then by definition trunk ports. All other
ports are usually members of the production VLAN. We could not use the de-
fault VLAN as the Linux system will not bridge between a tagging and non-
tagging interface if they use the same physical device. We therefore configured
the VLAN id “2” for this network. For the quarantine VLAN we used id “3”, and
under normal circumstances no switch port is member of that VLAN. Within
the Linux system, we configured two pseudo-interfaces, eth0.2 and eth0.3, to
connect to both VLANs, while the physical device eth0 was plugged into a
trunk port on the topmost switch. As IDS software we used Snort. In order
to put Snort into an anomaly detection mode, we installed the plugin Spade
(Statistical Packet Anomaly Detection Engine) [10], [13]. Normally Spade would
have been extended to support two thresholds instead of one,4 however, for the
prototype we simply used Spade’s single threshold as the lower bound. Thus we
had no upper bound which could indicate a “definite incident” but had rather
a huge margin of suspicion. This means that when the score Spade calculates
for a specific observed packet is above the threshold configured, our isolation
procedure was triggered.

The honeynet that is part of the quarantine network was reduced to a single
honeypot, for which we simply used a representative WindowsXP installed as
guest operating system inside a VMware [21]. The WindowsXP was configured
just as the client systems in our production network and it is automatically
started inside the Linux system when it boots up. The honeypot’s network in-
terface inside the hosting Linux system, vmnet1, was bridged via the brctl utility
to both eth0.2 and eth0.3. Because the honeypot should not be visible to the
production network, we used the link layer filtering capabilities of Linux and its
accompanying utility ebtables to drop all packets destined to or coming from the
Ethernet MAC address of the VMware guest when they try to pass eth0.2.

For the detection of newly connected systems we used the program arp-
watch [14]. This utility allows to trigger external programs via the switch “-s”
(originally intended to invoke a sendmail process) which is employed in our pro-
totype to start a small script that searches for the physical switch port of the
new system. Here we simply issue three SNMPv3 “get” requests: the first ex-
tracts from the port table of the Bridge-MIB, dot1dTpFdbPort, the bridge port
of the system with the observed MAC address. This has then through a sec-
ond request to be mapped to the ifIndex of the Interface-MIB by retrieving
dot1dBasePortIfIndex from the Bridge-MIB of the switch. The third request
extracts the VLAN of the interface we found by reading vmVlan from Cisco’s
VLAN-MEMBETSHIP-MIB. If no membership exists, we know it is the trunk

4 Work has been started to implement this feature in Spade.

12

port of the switch and can safely discard the results as the physically attached
port will be on another switch in the hierarchy. At worst we have to issue three
requests and wait for three responses for all switches in the network to obtain a
valid result.5 We then save the information switch-ip:if-index for later use
by the isolation/rehabilitation function in a file with the MAC address as file
name.

When Snort flags a suspicious system, it calls the isolation/rehabilitation
function, which is a script in our prototype. This looks up the switch and the
port of the offender and moves the system into the quarantine VLAN by sending
a single SNMPv3 “set” request to the switch which contains vmVlan.[ifIndex]
as OID and the new VLAN id “3” as value. The performance of this operation
depends on the speed of the network and is usually completed within milliseconds
as it takes almost no time at the switch.

We now ensured that upon Snort issuing the first alert (under slight network
load this is done between 1-2 seconds after observing the suspicious activity), our
mechanisms isolated the corresponding system very fast and efficiently. To en-
force the confinement, we configured ebtables in such a way that only WWW traf-
fic is allowed to pass from eth0.3 to eth0.2, thus leaving the quarantine network
and entering the production network. All other packets were manipulated by the
destination network address translation mechanisms (DNAT) Linux offers: we
set the destination MAC and IP addresses to be those of the VMware-based
honeypot. This allowed us to safely bridge all traffic from eth0.3 to vmnet1, to
which the honeypot is connected, without reconfiguring the network of it all the
time. On the other hand, when the honeypot now sends response packets back
to the suspicious system, we can switch the source IP addresses back by using
Linux’ connection tracking mechanism, however, the source MAC addresses can-
not be reinstated. This will not affect the applications running on the systems
but may serve malicious code to detect our detour to the honeypot.

The last building block of our system was the development of a fast HIDS for
the honeypot. As this was VMware-based, we chose to utilize VMware’s methods
to make disk images non-persistent, which means that changes to the disk image
made by the guest operation system will not be written to the original file but to
a so-called REDO file. This not only provided us with an efficient way to clean a
compromised honeypot very easyly, it also made finding unauthorized file access
possible. In order to accomplish this, we had to install the WindowsXP that
serves as the guest system into a FAT32 filesystem because the NTFS filesystem
is not very suitable for finding differences. In fact VMware writes single sectors
that have been changed by the guest to the REDO file, thus it contains not a
filesystem but only small parts of it. With FAT32 it is nevertheless possible to
observe the names of newly created files within the guest system. We tested this
by periodically making a copy of the REDO file and letting the utility xdelta

5 This process can also be parallelized. As a consequence, finding the port through
which a system attaches to the network can be done in under a second. The per-
formance depends mostly on the network’s speed as the requests take almost no
calculation time within the switches.

13

���
���
���
���system:

suspicious

bridge
eth0.2

eth0.3

Snort/
Spade SNMP

arpwatch/

isolation/
rehabilitation

vmnet1

VMware:
WindowsXP

WindowsXP

HIDS/xdelta
on REDO file

quarantine VLAN

production network

client

client

client

client

monitoring system

switch

Switch

switch

Fig. 2. Prototype implementation and testing scenario

compare both REDO files after 10 seconds. In first tests we were able to detect
the creation of the file “explorer.exe” by the MyDoom.B virus within the system
directory. Thus we had built a small but effective HIDS that reports suspicious
file creation just in time.

The prototype has just been built and is being tested, therefore no detailed
experimentation results can be given right now. Also the feedback mechanism
for the rehabilitation or disconnection of the offending system has not been
implemented yet. However, we could demonstrate that some technical obstacles
such as bypassing default bridge logic by link layer redirection with MAC address
DNAT can be overcome and that the system itself is achievable.

5 Conclusion and outlook

In this paper, we presented a concept which combines the strengths of IDS,
IPS and honeynet approaches. As a result, it is possible to substantiate (or
abandon) an unspecific initial suspicion issued by an anomaly based IDS and,
thus, to improve its detection accuracy. By using VLANs and packet filtering it is
possible to maintain basic service to the suspicious system during the observation
period while minimising the risk for the production network on the other hand.

A prototype implementation of this concept is already partially operational
and first tests have already indicated that a realisation is feasible and that
promising results can be obtained. Thus, this highly automated system requir-
ing only moderate implementation and administration effort has the potential to
improve security in networks where classical firewall concepts alone are not suf-
ficient, e.g. due to a large number of mobile end systems which are dynamically
added and removed.

Further studies are planned to refine the relatively simple implementation
of some components of the prototype implementation. In particular, it will be
investigated if some of the statically preconfigured functions can be replaced by

14

more dynamically adaptive solutions. The refined prototype will allow to eval-
uate robustness, scalability and performance of the proposed scheme in more
detail. Furthermore, additional tests will provide more insight into the optimi-
sation of system parameters, e.g. timers and thresholds. An open issue is how
several suspicious systems can best be observed at the same time, i.e. if it is bet-
ter to provide several (virtual) quarantine networks or to try allocate incidents
in the quarantine network to specific suspects by correlating HIDS and NIDS
data. At a later stage, investigations on suitable scenarios are planned because
our concept currently focuses on highly autonomous malware (such as viruses)
and it is yet not clear whether remotely controlled intrusions could be safely
contained in the quarantine network we developed.

References

[1] Allen, J., Christie, A., Fithen, W., McHugh, J., Pickel, J. and Stoner, E.: ,,State of
the Practice of Intrusion Detection Technologies”, CMU/SEI-99-TR-028 (2000)

[2] E., Cloete, E., Venter, L.M.: ,,A comparison of Intrusion Detection systems”,
Computers and Security, 20 (2001), S. 676-683

[3] Lazarevic A., Ozgur A., Ertoz L., Srivastava J., Kumar V.: ,,A comparative study
of anomaly detection schemes in network intrusion detection”, in: SIAM Interna-
tional Conference on Data Mining (2003)

[4] Debar H., Dacier M., Wespi A.: ,,Towards a Taxonomy of Intrusion-Detection
Systems”, Computer Networks, 31(8): S. 805–822, April 1999.

[5] McLaughlin, Laurianne: ,,Bot Software Spreads, Causes New Worries”,
IEEE Distributed Systems online 1541-4922, Vol. 5, No. 6; June 2004,
http://csdl.computer.org/comp/mags/ds/2004/06/o6001.pdf

[6] The Honeynet-Project: ,,Know Your Enemy: Learning about Security Threats”,
Indianapolis: Addison-Wesley, 2004, http://www.honeynet.org/

[7] S. Riebach, B. Toedtmann, Erwin P. Rathgeb: ,,Efficient deployment of honeynets
for statistical and forensic analysis of attacks from the Internet”, to appear in the
proceedings for Networking 2005 conference, Waterloo Ontario, Canada, 02.-06.
May 2005

[8] S. Riebach, B. Toedtmann, Erwin P. Rathgeb: ,,Risk assessment of production
networks using honeynets - some practical experience”, to appear in the proceed-
ings of ISPEC05 conference, Singapur, 12.-14. April 2005 r

[9] The Honeynet Project: ,,Know your enemy: Passive Fingerprinting”, Whitepaper,
March 2003, http://www.honeynet.org/papers/finger/

[10] Roesch, Marty; Caswell, Brian: ,,Snort’s official homepage”,
http://www.snort.org, last seen: 2. Feb. 2005

[11] Lehti R., Pablo Virolainen, P., van den Berg, R.: ,,AIDE (Advanced Intru-
sion Detection Environment)”, http://sourceforge.net/projects/aide, last seen: 2.
Februar 2005

[12] Metcalf, W.: ,,Snort inline Projekt Homepage”, http://snort-
inline.sourceforge.net/, last seen: 2. Feb. 2005

[13] Biles, S.: ,,The SPADE Project”, last seen: 11. Oct. 2004,
http://www.bleedingsnort.com/article.php?story=20041011095505501

[14] LBNL’s Network Research Group: ,,arpwatch”, http://www- nrg.ee.lbl.gov/, last
seen: 2. February 2005

15

[15] Zeltserman, D.: ,,A practical guide to SNMPv3 and network Management”, New
Jersey 1999

[16] Linux netfilter/iptables project: ,,netfilter/iptables”, http://www.netfilter.org/,
last seen: 2. Febraury 2005

[17] Schuymer, Fedchik, Borowiak: ,,ebtables”, http://ebtables.sourceforge.net/, last
seen: 2. February 2005

[18] Decker E., Langille P., Rijsinghani A., McCloghrie K.: ,,RFC 1493 - Definitions
of Managed Objects for Bridges”, Internet Standard, 1993

[19] Blunk L., Vollbrecht J.: ,,RFC 2284 - PPP Extensible Authentication Protocol
(EAP)”, Internet Standard, 1998

[20] IEEE: ,,Port-Based Network Access Control”, New York 2001
[21] VMware, Inc.: ,,VMware Workstation 4”, http://www.vmware.com/, last seen:

2. February 2005

